Friction model for single-asperity elastic-plastic contacts
نویسندگان
چکیده
منابع مشابه
A Self-Consistent Scheme for Elastic-Plastic Asperity Contact
In this paper, a generalized self-consistent scheme, or “three phase model”, is used to set up a micro-mechanics model for rough surface contact with randomly distributed asperities. The dimensionless average real pressure p is obtained as function of the ratio of the real contact area to the apparent contact area, 0 / A Ar . Both elastic and plastic materials are considered, and the influence ...
متن کاملFriction Laws for Elastic Nano-Scale Contacts
– The effect of surface curvature on the law relating frictional forces F with normal load L is investigated by molecular dynamics simulations as a function of surface symmetry, adhesion, and contamination. Curved, non-adhering, dry, commensurate surfaces show a linear dependency, F ∝ L, similar to dry flat commensurate or amorphous surfaces and macroscopic surfaces. In contrast, curved, non-ad...
متن کاملA Static Friction Model for Elastic-Plastic Contacting Rough Surfaces
A model that predicts the static friction for elastic-plastic contact of rough surfaces is presented. The model incorporates the results of accurate finite element analyses for the elastic-plastic contact, adhesion and sliding inception of a single asperity in a statistical representation of surface roughness. The model shows strong effect of the external force and nominal contact area on the s...
متن کاملLocal nanoscale heating modulates single-asperity friction.
We demonstrate measurement and control of single-asperity friction by using cantilever probes featuring an in situ solid-state heater. The heater temperature was varied between 25 and 650 °C (tip temperatures from 25 ± 2 to 120 ± 20 °C). Heating caused friction to increase by a factor of 4 in air at ∼ 30% relative humidity, but in dry nitrogen friction decreased by ∼ 40%. Higher velocity reduce...
متن کاملA molecular dynamics study of scale effects on the friction of single-asperity contacts
A micro-mechanical dislocation model of frictional slip between two asperities was presented by Hurtado and Kim [1], which predicts that the friction stress is constant and of the order of the theoretical shear strength, when the contact size is small. However, at a critical contact size there is a transition beyond which the frictional stress decreases with increasing contact size, until it re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2012
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.86.045452